بهبود طبقه بندی طیفی- مکانی جنگل پوشای مینیمم با کاهش ابعاد تصاویر فراطیفی

نویسندگان

داود اکبری

d. akbari surveying and geomatics engineering department, college of engineering, university of tehran, tehran, iranگروه مهندسی نقشه برداری - پردیس دانشکده های فنی - دانشگاه تهران عبدالرضا صفری

a. safari surveying and geomatics engineering department, college of engineering, university of tehran, tehran, iranگروه مهندسی نقشه برداری - پردیس دانشکده های فنی - دانشگاه تهران صفا خزائی

s. khazai department of civil engineering, college of engineering, imam hussein comprehensive university, tehran, iranگروه مهندسی عمران- دانشکده فنی- دانشگاه جامع امام حسین (ع) سعید همایونی

s. homayouni department of geography, university of ottawa, ottawa, canadaگروه جغرافیا- دانشگاه اوتاوا- کانادا

چکیده

فن آوری سنجش از دور فراطیفی دارای کاربردهای فراوان در طبقه بندی پوشش های زمین و بررسی تغییرات آنها است. با پیشرفت های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه بندی تصاویر فراطیفی ایجاب می کند. در این تحقیق روشی جدید جهت طبقه بندی طیفی-مکانی تصاویر فراطیفی به کمک الگوریتم جنگل پوشای مینیمم ( msf) مبتنی بر نشانه ها که یکی از دقیق ترین الگوریتم ها در این زمینه است و تکنیک کاهش ابعاد معرفی می شود. در روش پیشنهادی تاثیر کاهش ابعاد تصاویر فراطیفی به کمک الگوریتم ژنتیک در سه مرحله قبل و بعد از انتخاب نشانه ها و به صورت همزمان بررسی می گردد. در این مطالعه نشانه ها از روی نقشه طبقه بندی ماشین بردار پشتیبان ( svm) انتخاب شدند. روش پیشنهادی بر روی سه تصویر فراطیفی pavia، telops و indian pines پیاده سازی گردید، نتایج آزمایشات بدست آمده برتری به کارگیری الگوریتم ژنتیک را قبل از انتخاب نشانه ها در تصاویر pavia و telops نشان می دهد. در تصویر indian pines کاهش ابعاد در هر دو مرحله قبل و بعد از انتخاب نشانه ها و به صورت همزمان موجب افزایش دقت طبقه بندی می گردد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود طبقه بندی طیفی- مکانی جنگل پوشای مینیمم با کاهش ابعاد تصاویر فراطیفی

فن‌آوری سنجش از دور فراطیفی دارای کاربردهای فراوان در طبقه‌بندی پوشش‌های زمین و بررسی تغییرات آنها است. با پیشرفت‌های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه‌بندی تصاویر فراطیفی ایجاب می‌کند. در این تحقیق روشی جدید جهت طبقه‌بندی طیفی-مکانی تصاویر فراطیفی به کمک الگوریتم جنگل پوشای مینیمم ( MSF) مبتنی بر نشانه‌ها که یکی از دقیق‌ترین الگ...

متن کامل

بهبود طبقه بندی طیفی-مکانی تصاویر ابرطیفی با به کارگیری اطلاعات مکانی در انتخاب نشانه ها

فنآوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه‌ بندی پوشش‌ های زمین و بررسی تغییرات آنها است. معمولترین روش جهت طبقهبندی تصاویر ابرطیفی، طبقه‌ بندی مبتنی بر پیکسل بوده که در آن هر پیکسل فقط با اطلاعات طیفی خود و بدون در نظر گرفتن پیکسل های همسایه، به کلاس مشخصی اختصاص می‌ یابد. پیشرفتهای اخیر و ایجاد تصاویری با قدرت تفکیک مکا...

متن کامل

تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی

فن‌آوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه­بندی پوشش‌های زمین و بررسی تغییرات آنها می‌باشد. با پیشرفت‌های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه­ بندی تصاویر ابرطیفی ایجاب می‌کند. در این تحقیق سعی می‌گردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه­ بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریت...

متن کامل

بهبود طبقه بندی بدون نظارت تصاویر فراطیفی با استفاده از مدل خوشه بندی فازی gustafson-kessel

مدل های خوشه بندی c-means یکی از پرکاربردترین شیوه های طبقه بندی نظارت نشده در آنالیز داده ها به شمار می­رود. مدل فازی این روش، یعنی fuzzy c-means، یکی از مشهورترین مدل هایی است که در آن هر داده با یک مقدار درجۀ عضویت بین 0 و 1، به هر یک از خوشه ها اختصاص داده می­شود. این مدل خوشه بندی جهت طبقه بندی داده های سنجش از دوری بسیار استفاده شده است. مدل fuzzy c-means از فاصلۀ اقلیدسی جهت خوشه بندی اس...

متن کامل

کاهش بعد تصاویر فراطیفی از طریق خوشه بندی فازی باندها

این مقاله یک روش نوین جهت انتخاب باند از تصاویر فراطیفی از طریق خوشه بندی باندها ارائه می دهد. نوآوری اصلی این تحقیق در دو موضوع قرار می‌گیرد: الف- ارائه یک فضای محاسباتی جدید با نام فضای پدیده که در آن باندها بر اساس انعکاس طیفی پدیده ها دارای بردار مشخصه می‌شودد. ب- ارائه معیار هایی نظیر عدم قطعیت و زاویه در فضای پدیده برای شناسایی باندهای با وابستگی بالا و باندهای حاوی اطلاعات. پس از آنکه فض...

متن کامل

طبقه بندی تصاویر فراطیفی با استفاده از مدل آمیخته ی گاوسی و الگوریتم نمونه گیر گیبز

با پیشرفت­های فناوری سنجش از دور و تولید داده­های فراطیفی با اطلاعات طیفی فراوان، استفاده از این داده­ها جهت مطالعه دقیق پدیده­ها به سرعت در حال گسترش است. تصاویر فراطیفی به دلیل نمایش گسترده خصوصیات طیفی عوارض و پدیده­های سطح زمین در بسیاری از علوم زمین مورد توجه قرار گرفته‏‏اند. یکی از مهمترین کاربردهای تصاویر فراطیفی، طبقه­بندی آنها و تولید نقشه­های پوشش زمینی بدون نیاز به داده­های واقعیت زم...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
علوم و فنون نقشه برداری

جلد ۵، شماره ۲، صفحات ۲۱۹-۲۲۹

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023